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A hybrid three-dimensional electromagnetic modeling scheme

K. H. Lee*, D. F. Pridmorez, and H. F. Morrison*

ABSTRACT

We present an efficient numerical method for computing
electromagnetic (EM) scattering of arbitrary three-
dimensional (3-D) local inhomogeneities buried in a uni-
form or two-layered earth.

In this scheme the inhomogeneity is enclosed by a volume
whose conductivity is discretized by a finite-element mesh
and whose boundary is only a slight distance away from the
inhomogeneity. The scheme uses two sets of independent
equations. The first is a set of finite-element equations de-
rived from a variational integral, and the second is a mathe-
matical expression for the fields at the boundary in terms of
electric fields inside the boundary. The Green’s function is
used to derive the second set of equations. An iterative
algorithm has been developed to solve these two scts of
equations. The solutions are the electric fields at nodes
inside the finite-element mesh. The scattered fields any-
where may then be obtained by performing volume integra-
tions over the inhomogeneous region.

The scheme is used for modeling 3-D inhomogeneities
with plane-wave and magnetic dipole sources. The results
agrce with earlier model analyses using the finite-element
technique.

INTRODUCTION

A limited number of numerical solutions for three-dimensional
(3-D) electromagnetic (EM) problems have been discussed in the
geophysical literature. These solutions have been obtained using
the integral equation, finite-element, or finite-difference tech-
niques. Lines and Jones (1973) and Reddy et al (1977) presented
solutions to 3-D magnetotelluric (MT) problems using finite-
difference and finite-element techniques, respectively. Pridmore
(1978) reported iterative solutions to 3-D electric and EM prob-
lems using the finite-element technique. The drawbacks of these
techniques are: (1) the number of equations is so large that the
computer cost is prohibitive, and (2) numerical differentiation of
the obtained solution, which is necessary to compute the full set
of fields, is not always reliable. The difficulties can be avoided by
using the integral equation technique provided the inhomogeneity
is of finite extent. The application of the integral equation tech-
nique to 3-D EM problems was reported by Hohmann (1975).
Weidelt (1975), and Meyer (1977). In this technique, the number

of equations is basically the same as the number of inhomogeneous
elements, but the matrix is full and generally asymmetric.

A hybrid scheme. which uses a combination of these techniques,
was introduced by Scheen (1978). A variational integral for the
magnetic field is initially formulated over a region discretized by
a finite-element mesh, and a system of linear equations is derived
from the variational integral. Then, using integral relations, a
second set of equations is derived for the scattered magnetic fields
at the mesh boundary positioned some distance away from the
inhomogeneity. To derive the second set of equations, the scatter-
ing current must first be found through a numerical V. X H opera-
tion. An algebraic substitution of the second set of equations into
the first set leads to a combined set of linear equations, from which
magnetic fields inside the finite-element mesh are finally obtained.
This is the direct hybrid scheme. The matrix for the combined set
of equations is full and asymmetric. The size of the matrix is
slightly targer than the one associated with the integral equation
technique, but the scheme does not need to evaluate Green’s func-
tions between elements within the finite-element mesh, thus avoid-
ing the problem of singular cell integration. The second approach
discussed by Scheen is an iterative scheme which uses the same
sets of equations. Initial field values are assigned along the bound-

. ary. and the first set of finite-element equations is solved. Scattered

magnetic fields are then calculated using the second set of equa-
tions. These scattered fields are substituted for the boundary fields
and the process is repeated iteratively until changes in the boundary
values become insignificant.

In the present approach, we have solved the problem iteratively
in terms of the secondary electric fields within the mesh. The
scattering currents can then be obtained directly by adding appro-
priate primary electric fields to the finite-element solutions and by
multiplying the results by the anomalous conductivities. This pro-
cess avoids the difficulty of taking the numerical curl operation,
which would otherwisc be necessary when the solution is derived
in terms of magnetic fields.

FORMULATIONS OF FINITE-ELEMENT EQUATIONS
AND INTEGRAL RELATIONS

We first derive a set of finite-element equations from a varia-
tional integral. The variational integral may be formulated using
either the total EM cnergy contained in the system (Morse and
Feshbach, 1953) or a mathematical function detined by the mini-
mum theorem (Stakgold, 1968). In order to apply the minimum
theorem. it is necessary to introduce a stationary principle to derive
the finite-element cquations.
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Maxwell’s equations for an ¢/’ time dependent system become
VxE=-ZH-M,, (1)
and
VxH={E+]J, (2)

where 7 = jop and § = ¢ + jwe, and M; and J, are impressed
magnetic and electric sources. The domain equation for the electric
field in the presence of J alone is derived from equations (1) and
(2) as

V X E

V x +VE = - ],. (3)

If we generalize the inner product to include the one with no com-
plex conjugation of one of the vectors involved, the minimum
theorem provides the corresponding functional to equation (3) as

- | [v T2

This is not the usual inner product defined in complex space.
Under this inner product, the operator [V X (V X E)/Z + §] is
self-adjoint under homogeneous Dirichlet and natural boundary
conditions, but not positive definite. Since the operator is not
positive definite, the minimum theorem does not hold. However,
it can be shown (Pridmore, 1978) that the solution to equation
(3) corresponds to a stationary point of the tunctional F(E). Apply-
ing the vectoridentity, V- A X B =B -V X A~ A-V x B,
and the divergence theorem, equation (4) becomes

ZU (w+yE-E+2E~JSZ)d»r

t vi

+yE) -E + 2E'Js] dv. (4)

+j,, (ExH)-ds], (5)

where the volume has been divided into a number of smaller ones
over which o is constant. The surface integrals along adjacent

boundaries must cancel because the tangential components of

E and H are continuous. At the external boundary, the surface
integrals will not contribute to the variation of £ (E). With proper
boundary values, such as the tangential components of either E
or H prescribed, the variation of [((E x H) - ds would vanish.
Another useful condition commonly encounteredisE X H - n =
0, namely the natural boundary condition. If the EM ficlds are
either symmetric or antisymmectric across a certain surface, this
surface may be called a natural boundary, and no power is trans-
mitted across this surface. Thus, the effective variational integral
is the volume integral part of equation (5).

VxE VXE
F(E) = Zf —_—

+JE - E + 2E - J,)dv. (6)
The funcuonal is in terms of the total electric fields. It we know
the primary electric field, the field that would exist in the presence
of a horizontally layered half-space alone, the functional could
alternatively be formulated in terms of the secondary electric
fields. According to the principle of superposition E = E, + E,,
we can derive the domain equation for the secondary electric field
as

>+ JE, = —AVE,. N

where subscripts s and p denote secondary and primary, re-
spectively, and Ay is the difference in y between the medium

used for the primary field calculation and the inhomogeneity. The
corresponding functional F(E,) can also be written as

VxE -V xE;
F(E) = Ef —

+ yES CE, + 2A7E, - E,)dv. (8)

Using hexahedral elements and a trilinear basis function which
describes the field behavior in each ¢lement, the secondary electric
fields in a particular element e may be approximated by (Zien-
kiewicz, 1977)

ES= (NiNy . . . Ng)(EqEg . . . Eg)

for each component of the electric fields. The shape functions
N;. j= 1~ 8, are trilinear, and Ey, j = 1 ~ 8, are the un-
known secondary fields at eight corners of a hexahedron. Sub-
stituting the approximation into equation (8), carrying out volume
integrations, and stacking these clementary entries into a system
matrix K, we obtain the following approximate matrix representa-
tion for the functional F (E,):

F(E,) = ETKE, + 2ETS. (9)

where S is a source vector obtained from the last part of the integral
(8) over the volume v; summed vver i. The stationary point of F
can be found by setting the first derivative of £ with respect to Eg
to zero. The first derivative of F is equivalent to the first variation
of F. This generates the finite-elcment matrix equation

KE; = -S. (10)

The system matrix K is banded and symmetric. For a grid system
of 10 X 10 X 10 nodes in each direction, the total number of
equations is 3000 with a maximum half bandwidth of 336 includ-
ing the diagonal entry. The memory requirement for this system
is roughly 1 million complex words. This is about the maximum
size for the iterative hybrid scheme to be economically practical.

To solve equation (10), we must determine both the primary
fields inside the inhomogeneity and the secondary fields at nodes
on the boundary of the finite-element mesh. The primary field
solution for a layered half-space was given by Wait (1962), Quon
(1963), Frischknecht (1967), Dey and Ward (1970), and Ryu et al
(1970), to list a few.

To find the secondary field scattered by an inhomogeneity, let
us first consider a point source of current J° in the lower half-
space of a two-layered earth. Following Harrington (1961, p. 77),
we write the divergenceless vector H as the curl of a vector A,
H = V X A, which satisfies the following inhomogeneous wave
equation in rectangular coordinates

VZA + k%A = -J8(r — '), (1
where k% = —Z§, and r and r’ are the positions of observation
and source, respectively. The particular solution to equation
(11) is given by

s, Jgklr—r|
AP = J— SR (12)

’

4m jr —r'|

and the primary fields generated by the solution A” are given by

I
EP = —3AP 4 — V(V « AP) (13)
¥

and
H? = V X A”. (14)

In the presence of horizontal interfaces, we must consider the
secondary field caused by the reflections at these boundaries.
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The derivation of the secondary field is given in the Appendix.
In the integral equation technique. the conductive inhomogeneity
is sirulated by a collection of electric current sources distributed
over the volume occupied by the inhomogeneity. This current is
called the scattering current and is defined by the product of A¥
and the total electric field (Harrington, 1961). The true boundary
value of the hybrid scheme is the scattered field due to the inhomo-
geneity. Therefore, the boundary value is the volume integral of
the electric field given by equation (A—18) with J*(r’) replaced
by A¥(r')[E,(r') + Eg(r’)]. Thus,

E,(r) :J TE(rir') - A¥(r')[E,(r') + Eg(r')]dv.  (15)
v
Using the same grid system that gives rise to the finite-clement
equation (10), we can rewrite the integral (15) as

E r) = 2 f

oy
where A¥(r') is assumed to be a constant in each hexahedron.
Then the scattered field at the boundary of the finite-element mesh

may be approximated in the matrix form as

E® = GE! + S, (17)

FE(r;r') - A¥(r)[E, (r') + E (r')]dv, (16)

where superscripts b and i denote boundary and inhomogencous
region, respectively, and S, is an additional source vector due
to the primary field. G is an m X n matrix whose entries may be
obtained by integrating TE(r; r') N(r') over cach clementary
volume. Here, N(r') is the same shape function used for the

derivation of the finitc-clement equation (10). and m and n are
the numbers of nodal points on the boundary and inside the bound-
ary. respectively. If we partition the finite-clement equation (10)
into

then the upper part of equation (18) is
K, E! + K El = -8, (19)

Substituting cquation (17) into (19), we find
(Ki + Kip GIE; = — (5, + K;48,).
and the solution for E} becomes
El= — (Ki+ KGNS, + KipSp). (20)

This is the direct hybrid scheme for the secondary electric fields
inside the boundary. The matrix (K,;; + K,;;,G) is asymmetric,
full. and of order n.

The iterative hybrid scheme is initiated by solving the finite-
clement equation (19) using an initial guess for the boundary
values. Thus, the initial secondary field solution becomes

El = ~ K748, + KuED. (21

A version of a direct solution algorithm described by Reid (1972)
has been used. With this initial solution inside the inhomogeneity,
the scattered field is computed at the boundary using equation (17).
The volume integral of Green's function is carried out using one-
or two-point Gaussian quadrature. The Green's dyadics computed
during the first iteration are stored and repeatedly used as the
iteration is continued.
The boundary value for the ith iteration is given by

(E2) = (B2 ' + W[E* — (E&)']. (22)

where E¥ is the scattered ficld given by equation (17), and W is

- a weighting coefficient. A number of different values of W have

been tested on a simple 3-D model. The model is a brick of size
I X2 X 2kmin x, v, and c, respectively, buried at a depth of
1 km in a uniform half-space of 100 2-m resistivity. The resistivity
of the body is 5 {2-m, and the frequency is 1.0 Hz. The incident
field is a plane wave with the clectric field polarized in the y-
direction. The amplitude of the incident electric field is 1.0 V/m.
Figure 1 shows the sum of the absolute changes in £, versus the
number of iterations for different weighting cocfficients. The sum
diverges when W is 0.4, and converges fastest when it is 0.2.
Since the diagram shows the sum of the absolute changes. os-
cillatory behavior expected for a particular ficld component
cannot be observed. Based on the results of the test model, all the
model results presented here have been obtained using a weighting
coetficient of 4.0 divided by the conductivity contrast (20 for the
test model) of each model. It should be mentioned that when the
conductivity contrast is higher than approximately 1000. the rate
of convergence is extremely slow, and may even diverge.

As an additional convergence check, a number of solutions
were obtained tor an MT model by changing the number of cells.
The model is a conductive brick 1 X 2 X 2 km in size buried in
a uniform half-space ot 100 (2-m resistivity. The depth from the
surface to the top of the body is 0.5 ki, and the resistivity of the
body is 0.5 Q-m. The incident ficld is a plane wave with the
electric ficld polarized either in the y-direction or in the x-direction.
For a frequency of 0.01 Hz. the apparent resistivity profiles ob-
tained for cach polarization have been plotted in Figures 2 and 3.
respectively. Each figure contains three profiles obtained by vary-
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ing the number of cells: 40. 105. and 168. In addition. 2-D re-
sults were computed with Ryu's (1971) finite-element algorithm
and plotted in the corresponding figures. The convergence is
reasonable. at least for the E -incident case. even though the con-
ductivity contrast of the model is relatively high.

RESULTS AND APPLICATIONS

The EM responses ot several models have been obtained with
the iterative hybrid scheme. The source is a magnetic dipole on
or above the surface of the earth. The required number of iterations
differed from model to model. but it was between 30 and 50.

The first model consists of a 1.82 €2-m conductor 500 X 3000 x
500 m buried in a uniform half-space of 13.7 £}-m resistivity. The
depth to the top of the body is 200 m. It corresponds to a scale
tank mode! studied by Frischknecht (personal communication,
1975). An array of horizontal loops separated by 2000 m is moved
on the surface of the earth across the top ot the center ot the body.
The frequency 1s 0.15 Hz. The in-phase and quadrature parts of
the normalized H, versus the array center are plotted in Figure 4.
The hybrid solution has a maximum in-phase anomaly twice as
large as that of the tank model. The symmetric peaks in the quad-
rature response on the sides of the anomaly are not observed in
the hybrid solution An integral equation solution obtained for
the same model (Meyer. 1977) also tailed to show these peaks.
This may indicate a limitation ot available 3-D numerical tech-
niques in general. The response of the body is due to both induc-
tion and current channeling. The current induced channels in the
half-space in and out of the body as would dc conduction current.
In addition. an eddy current is induced in the body and tends to
be concentrated ncar its surface. A limited number of elements
simulating a 3-D body cannot accurately represent the fields
associated with these mduction currents. However. in analyzing
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FiG. 4. Comparison between Frischknecht's scale tank model
result and the hybrid solution.
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field data, the numerical error shown in Figure 4 would not cause
serious problems, since errors in the field data will usually be
greater than the numerical errors, at least for the quadrature com-
ponents.

The next model is a 1 {2-m conductor 30 X 120 x 90 m buried
at a depth of 30 m in a uniform half-space of 30 {}-m resistivity. A
vertical magnetic dipole of moment 47 A-turn-m? is on the sur-
face of the earth 75 m to the left of the center of the body. The fre-
quency used is 1000 Hz. The vertical component of the secondary
magnetic field H$ was normalized by the free space vertical mag-
netic field A%, and the result is plotted in Figure 5. At the end of
the thirtieth iteration, the average change in the boundary values
became less than 0.1 percent. Along with the hybrid solution, a
finite-element solution has been plotted and compared. The electric
ficld was initially obtained using the point iterative method on a
system of finite clement equations, then the magnetic field was
computed using Green's functions (Pridmore. 1978). The quad-
ratute part of H} shows good agreement between the solutions:
the in-phase values differ by approximately 6 percent at large
separations.

The last model 1s a 5 }-m conductive brick buried m an earth
of 100 Q-m resistivity with a 25 m thick overburden layer of
30 € m resistivity. The depth to the top of the body is 50 m and
the size of the body is 50 < 250 < 200 m. A single coil, with its
magnetic moment oriented in the x-direction, is flown 50 m above
the ground across the center of the body in the direction parallel
to the x-axis. The frequency is 30 Hz. The solution for this model
was obtained to study the response of an airborne superconducting
single coil system [Morrison. et al (1976)]. The basis of the super-
conducting single coil system is that the secondary field produced
by a conductive half-space, with or without inhomogeneities, can
be measured as the changes in input impedance Z of the trans-
mitting coil itself. The secondary magnetic field induces a small
voltage in the transmitter of

d
AV=-N—| B-ds,
dt J
where N is the number of turns. Considering that the secondary
ficld at the transmitter is locally uniform, and that only H, con-
tributes to the dot product B - ds. the change in the voltage can
be rewritten as

AV = —jouNAH .

where A is the cross-sectional arca of the coil. Sincce the secondary
magnetic field is proportional to the magnetic moment (N/A) of the
transmitter, the AV may be computed by

AV = —jon(NAIH,.

where H., is defined as the secondary H, due to a unit magnetic
moment. The change in the voltage in turn creates a change in the
input impedance of the transmitter suchthat AZ = AR + jwAL =
AV/I. Matching the real and imaginary parts of the AV separ-
ately, we find

AR = wp(NAZIm(H,).
and
AL = —w(NAZRe(H,).

The plots shown in Figure 6 are the in-phase and quadrature parts
of H, computed at the transmitter, i.c., the magnetic moment
used in 1.0 A-turn-m?, or alternatively NA = I = [. At 30 Hz.
the single coil would experience a resistance change of 3.15 X
10713 ) in moving from the background level to the peak of the
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anomaly in less than 100 m. The change in inductance would be
1.07 x 1077 H in roughly the same distance. Assuming that a
superconducting coil possesses an (NA)? of 10® and that the
system is capable of detecting 1078 Q with a system noise of
roughly the same magnitude, the anomaly in AR would be
3.15 x 107° Q. The signal-to-noise (S/N) ratio would be ap-
proximately 30. It would be difficult, if not impossible, to measure
the in-phase anomaly of 1.07 X 107% H.

DISCUSSION OF METHODS AND CONCLUSIONS

A numerical solution for the 3-D EM problem can be obtained
using either the direct or iterative hybrid scheme. The same num-
ber of Green’s functions must be evaluated in either approach.
For a typical iterative solution, more than half of the total CP time
was spent for the evaluation of Green’s functions. The iterative
scheme solves a system of finite-element equations whose matrix
is banded and symmetric, but it takes a considerable number of
iterations to obtain a solution. Consider a finite-element mesh
consisting of 20 nodes in each direction. The number of un-
knowns (n) inside the boundary is 17,496, and the number of un-
knowns (m) at the boundary is 6504. The maximum half band-
width (/) of the finite-element system matrix is 1266. The number
of complex multiplications required for a direct solution would
be approximately 0.5 X n®, or 2.68 x 10'2, excluding the num-
ber for the evaluation of Green’s functions. An iterative solution
requires 0.5 X n X ({ + 1) X (I + 2) operations for the initial
decomposition of the finite-element matrix, plus 2 X n X
(I + 1) + 3 X m X n operations for the back substitution and
boundary value computation for each iteration. The sum is roughly
1.41 x 10 + 3.85 x 10® X N at the end of the Nth iteration.
Theoretically, the iterative scheme should be more cost effective
than the direct hybrid scheme if N is less than 6900. Unfor-
tunately, this is not the case in practice. Use of extended memory
(disk) forces the iterative scheme to be severely I/0 bound, and
consequently the advantage of the scheme becomes much smaller
than expected. The typical CP to 170 ratio for the iterative scheme
was 0.2 on the CDC 7600 computer. The results obtained for the
Frischknecht model (Figure 4), as an example, cost approximately
$200, of which less than $35 was actually spent on the compu-
tation.

In the direct hybrid scheme, the boundary values are initially
expressed in terms of the internal unknowns using an integral
relation and then substituted into the finite-element equations re-
sulting in a set of combined equations. The solutions to these com-
bined equations are the fields inside the finite-element boundary.

Some analysis shows that a more cost cffective direct hybrid
scheme can be formulated easily. Substituting the internal un-
knowns Ef [equation (21)] into equation (17), we obtain

E; = —GK;"(K4E5 +S) +S,. (23)

Then the direct solution for the boundary value EZ becomes
E; = (I, + GK;'K;) (S, — GK3'S)). (24)
where I,,, is an m X m identity matrix. The scattered fields else-
where can then be obtained by initially calculating the fields
inside the boundary using equation (21) and then carrying out
necessary volume integrations. In terms of the number of opera-
tions, the ratio of the direct hybrid scheme [equation (20)] to the
one whose boundary value is given by equation (24), would be
roughly (n/m)3. Depending upon the ratio (n/m) of a given model,
a substantial amount of computing time could be saved. For the

same mesh described earlier in this section, the ratio (rn/m)?
would be approximately 19, a saving of at least a factor of 10.
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APPENDIX
ELECTROMAGNETIC FIELDS DUE TO A CURRENT SOURCE
EMBEDDED IN A LOWER HALF-SPACE OF A
TWO-LAYERED EARTH

Using the Sommerfeld integral, we can rewrite the particular
solution AP (equation (12)], as
F (7 L
AP = — | — e 2= (np)dN, (A-1)
41 0 Ug
where u; = W2 = kH)Y2 and p = [(x — x")% + (y — y)2]¥2
The horizontal wavenumber X\ is given by A = (k2 + k5)'2,
where k, and k, are the wavenumbers in x and y, respectively.
Using relation (Banos, 1966)



802 Lee et al

= . , ,
” FUR + RBye IWextx =D Ty =yl g gk,

—x

= ZWJ A (N) Jo(Ap)dA,
0

we find
J¢ efuglzéz’\
APk, by, 2) =— —— (A-2)
(ky. ky. 2) 5 "
in Fourier transform space. The vertical components of corre-
sponding primary fields are

hy Jx @ e 2l
EB(ky, ky, 2) = Lale T _—,

Yo 2 0z Uy
(A-3)
J, e u2lzz
H(ky . ky, 2) = —jk, = T
for J* = i,J,, and
wQ@inuQiiﬁzi
n " (A-4)
J, e uzlz-z"
He (ke ky. ) = jkxjy 5
for J* =1,J,, and
| 'p A2, evze?
EB(ky, ky, 2) = P »
HB(ky, Ky 2) = O
for J® = i,J,.

In a homogeneous source-free region, the rectangular com-
ponents of the vector potentials A and F satisfy the Helmholtz
equation (Harrington, 1961, p. 129)

Va3 + k2= 0 (A~6)

The electric and magnetic fields due to these potentials are given by

1
E=—-VXF—-(A+—-V(V-A)
y
and (A=7)

H=VxA-

Na)

F+—V(V-F).

0 | —

By inspection, there will be no E, if we choose A = 0 and F =
i.8. On the other hand, if we choose A = i, and F = 0, there
will be no H,. A field with no E, is called transverse electric to
z (TE), and a field with no H, is called transverse magnetic to
z (TM). Superposing these two independent modes, one can com-
pletely express an arbitrary field E and H in the source free region.

In the presence of a two-layered half-space (Figure A-1), 0 and
& satisfy equation (A—6), and the solutions in Fourier transform
space will be

(ei ) = <e,-* ) eTHiFT U2 4 (9;) etitTu2E =0, 1,2,
b; b/ b7 '
(A-8)

In its present coordinate system with z positive down, the super-
script + denotes downgoing potential. Since there is no down-
going potential in the air, 85 = ¢ = 0. The upgoing potentials
62 and &3 in the lower half-space are the primary terms due to

Air

06 =0, Ho:€0

B0+ bo
z=0. 7

8.4

92’¢2

O-I’/'LO’GO

O2,Ho. €0
™ TS

FIG. A—1. A two-layer earth with a scattering current J° in the lower
half-space.

the current element in that region. The electric and magnetic
fields are then expressed in terms of 0 and ¢ as

00 1 a%¢
Ex =-T—+ s
dy ¥ dxaz
99 1 %
Ey=—+—""—, (A-9)
dx Y dvoz
i 1 #%¢  A?
E;=—ib+—-——="7¢
A zZ
and
o 1 a%e
H,=—+—
ay Z axoz
H, = 6¢+1 il (A=10)
Y ax 2 oydz’
I a%¢ A?
H,= —Y8 + — == 0.

Equations (A—9) and (A-10) show that E, depends only on ¢ and
H, only on 9. Equating the primary fields £2 and H% given by
(A-3), (A-4), and (A-5) to E, and H, in equations (A-9) and
(A-10) with potentials 8 and ¢ substituted by the upgoing pri-
mary potentials 85 ¢%27 %22  and ¢3 *2%*2?’ we obtain

_ JKy Zody 0
0 = — — —= —, (A-11
2 )\Z 2 Ug )
- _ ks Iy
bg = NI
for J* = i J,, and
K, F9d, 1
0 =5 L —
A 2 (A—12)
- kv dy
2 = }\2 2 y
for J* =i, J,, and
82 = 0. (A-13)
o5 - J, 1
2 2wy

for J°

i,J,.
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The next step is to find coefficients 85, 87, 87, and 63 for the
TE mode, and dg, &7, &7, and &g for the TM mode. These
coefficients are determined by matching boundary conditions for
tangential components of E and H at layer boundaries. The prin-
ciple of superposition suggests that boundary conditions may
be applied to each mode separately. Thus, from the boundary
conditions for the TE mode, we find

6o
4N1N2€u2d 9-‘
T (N + No)(Ng + Ny)e¥1? + (N; — Ng)(Ny — Npe 14 2"
87
_ 2Ny(Ny — Ng)e*2? o
(N1 + Ng)(Ngy + N etd + (Ny — No)(Ng — Ny)e 1 72
01
- 2Ny (N1 + No)et2? 0:
(Ny + No)(Ng + N1)e“19 + (Nq = No)(Ny — Ny)emad
and
83
(N1 + No)(Ng — Ny)e*1? + (Ny — No)(Np + Ny)e “19
(N1 + No)(Ng + Ny)e19 + (N — No)(Ng — Ny)e #1?
eZuzdeg’ (A._14)

where d is the thickness of the first layer and N; = (u;/Z,).
The coefficients for the TM mode have expressions identical to
(A-14) with 0; and N; substituted by &; and K; = (u;/9,).
Replacing jk, by 8/dx and jk, by @/dy and using equation (A-7)
for E and H, we obtain the following electric and magnetic fields
in the region of interest. Hereafter, ¢, and 0, represent only the
coefficient part of the potentials given by equation (A—14).

(a) Electric fields in the lower half-space

L[~ :
E}=E} + ;J’ eTH2E T,
0
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y a2 y) Mo(xp)J b3 uy
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(v —y')?

=T Mol 0| o; i)
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7 gy p3
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p3

b |- 71 0n0)

(x—x)y—-y") L
R
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Y2 p

Jf e “2E T g

1
= P R
5 4m

L[ x'lgy ~ )

- J1(xp)
Y2

E;)%V_—L))\Johp]d,m

(x —x" )y —y")

+52[ o “J1(vp)

o ! 1
p oz zy) ) )\JO(M))} 0; —}
p

Ug
1 2y — y')?
+Jy{7[(— & 3) )
Y2 P

(y —y )2

1
+ _> Ji(hp)
P

}\JO()\P):' by Uy

+ Zg [(2()6—;3{2 - é) J1(xp)
- (x_pif)z Mahp)| 04 t}
1 h-vy)

” 7\211(>\p)¢§].
Y2 P

vo

o

1 :
El=F2+ — e*“w*z VdA.

41

[1( x —x'
Iy U
’ P

+Jy [Ai <_ y—Ty’> 7\2-’1(}\P)¢2+]

) AQJI(Ap)M]

(A-15)

L, N
+ 1| A Tp(hp) by — |,
Y2 Uz

where the primary fields E%, EY. and Ef are due to the primary
potentials 85 and ¢ . Since these potentials are identical to the
primary potential A” given by equation (12), the primary electric
fields may be analytically obtained using equation (13).

(b) Electric fields in the layer

1 _ L B 71422'
EL = dn.
0
1 2(x — x")? 1
J g |\ “)/1(}\0)
1 P P
(x —x')?

Molh)| (@] 17 — o7 e*12)1y

p?
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/20y —y)% 1 (c) Magnetic fields in the air
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J? can alternatively be written in a compact form as

=y 1
| ome; |
P 42 E(r) =) - J°(r) (A—18)

— 4 I i
+J, [(— A ) A2J1(\p) 0o —} and
b 12 H(r) = (e 1) - JP(r) (A-19)

+ : . . .
J:[0] where I' is a tensor Green's function (Harrington, 1961).

The electric and magnetic fields due to a point source of current



